\(\int \frac {\cos ^5(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx\) [545]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 55 \[ \int \frac {\cos ^5(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\sin ^3(c+d x)}{3 a^2 d}-\frac {\sin ^4(c+d x)}{2 a^2 d}+\frac {\sin ^5(c+d x)}{5 a^2 d} \]

[Out]

1/3*sin(d*x+c)^3/a^2/d-1/2*sin(d*x+c)^4/a^2/d+1/5*sin(d*x+c)^5/a^2/d

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2915, 12, 45} \[ \int \frac {\cos ^5(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\sin ^5(c+d x)}{5 a^2 d}-\frac {\sin ^4(c+d x)}{2 a^2 d}+\frac {\sin ^3(c+d x)}{3 a^2 d} \]

[In]

Int[(Cos[c + d*x]^5*Sin[c + d*x]^2)/(a + a*Sin[c + d*x])^2,x]

[Out]

Sin[c + d*x]^3/(3*a^2*d) - Sin[c + d*x]^4/(2*a^2*d) + Sin[c + d*x]^5/(5*a^2*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {(a-x)^2 x^2}{a^2} \, dx,x,a \sin (c+d x)\right )}{a^5 d} \\ & = \frac {\text {Subst}\left (\int (a-x)^2 x^2 \, dx,x,a \sin (c+d x)\right )}{a^7 d} \\ & = \frac {\text {Subst}\left (\int \left (a^2 x^2-2 a x^3+x^4\right ) \, dx,x,a \sin (c+d x)\right )}{a^7 d} \\ & = \frac {\sin ^3(c+d x)}{3 a^2 d}-\frac {\sin ^4(c+d x)}{2 a^2 d}+\frac {\sin ^5(c+d x)}{5 a^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.69 \[ \int \frac {\cos ^5(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\sin ^3(c+d x) \left (10-15 \sin (c+d x)+6 \sin ^2(c+d x)\right )}{30 a^2 d} \]

[In]

Integrate[(Cos[c + d*x]^5*Sin[c + d*x]^2)/(a + a*Sin[c + d*x])^2,x]

[Out]

(Sin[c + d*x]^3*(10 - 15*Sin[c + d*x] + 6*Sin[c + d*x]^2))/(30*a^2*d)

Maple [A] (verified)

Time = 0.24 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.71

method result size
derivativedivides \(\frac {\frac {\left (\sin ^{5}\left (d x +c \right )\right )}{5}-\frac {\left (\sin ^{4}\left (d x +c \right )\right )}{2}+\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{3}}{d \,a^{2}}\) \(39\)
default \(\frac {\frac {\left (\sin ^{5}\left (d x +c \right )\right )}{5}-\frac {\left (\sin ^{4}\left (d x +c \right )\right )}{2}+\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{3}}{d \,a^{2}}\) \(39\)
parallelrisch \(\frac {\left (\sin \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )-3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (-13+3 \cos \left (2 d x +2 c \right )+15 \sin \left (d x +c \right )\right ) \left (\cos \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )+3 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{60 d \,a^{2}}\) \(72\)
risch \(\frac {3 \sin \left (d x +c \right )}{8 a^{2} d}+\frac {\sin \left (5 d x +5 c \right )}{80 d \,a^{2}}-\frac {\cos \left (4 d x +4 c \right )}{16 d \,a^{2}}-\frac {7 \sin \left (3 d x +3 c \right )}{48 d \,a^{2}}+\frac {\cos \left (2 d x +2 c \right )}{4 d \,a^{2}}\) \(84\)
norman \(\frac {\frac {8 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}+\frac {8 \left (\tan ^{14}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}+\frac {112 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d a}+\frac {112 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d a}+\frac {16 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d a}+\frac {16 \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d a}+\frac {88 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d a}+\frac {88 \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{7} a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}\) \(186\)

[In]

int(cos(d*x+c)^5*sin(d*x+c)^2/(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d/a^2*(1/5*sin(d*x+c)^5-1/2*sin(d*x+c)^4+1/3*sin(d*x+c)^3)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 59, normalized size of antiderivative = 1.07 \[ \int \frac {\cos ^5(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {15 \, \cos \left (d x + c\right )^{4} - 30 \, \cos \left (d x + c\right )^{2} - 2 \, {\left (3 \, \cos \left (d x + c\right )^{4} - 11 \, \cos \left (d x + c\right )^{2} + 8\right )} \sin \left (d x + c\right )}{30 \, a^{2} d} \]

[In]

integrate(cos(d*x+c)^5*sin(d*x+c)^2/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/30*(15*cos(d*x + c)^4 - 30*cos(d*x + c)^2 - 2*(3*cos(d*x + c)^4 - 11*cos(d*x + c)^2 + 8)*sin(d*x + c))/(a^2
*d)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 588 vs. \(2 (44) = 88\).

Time = 34.25 (sec) , antiderivative size = 588, normalized size of antiderivative = 10.69 \[ \int \frac {\cos ^5(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\begin {cases} \frac {40 \tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{15 a^{2} d \tan ^{10}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 75 a^{2} d \tan ^{8}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 150 a^{2} d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 150 a^{2} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 75 a^{2} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 15 a^{2} d} - \frac {120 \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{15 a^{2} d \tan ^{10}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 75 a^{2} d \tan ^{8}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 150 a^{2} d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 150 a^{2} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 75 a^{2} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 15 a^{2} d} + \frac {176 \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{15 a^{2} d \tan ^{10}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 75 a^{2} d \tan ^{8}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 150 a^{2} d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 150 a^{2} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 75 a^{2} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 15 a^{2} d} - \frac {120 \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{15 a^{2} d \tan ^{10}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 75 a^{2} d \tan ^{8}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 150 a^{2} d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 150 a^{2} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 75 a^{2} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 15 a^{2} d} + \frac {40 \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{15 a^{2} d \tan ^{10}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 75 a^{2} d \tan ^{8}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 150 a^{2} d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 150 a^{2} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 75 a^{2} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 15 a^{2} d} & \text {for}\: d \neq 0 \\\frac {x \sin ^{2}{\left (c \right )} \cos ^{5}{\left (c \right )}}{\left (a \sin {\left (c \right )} + a\right )^{2}} & \text {otherwise} \end {cases} \]

[In]

integrate(cos(d*x+c)**5*sin(d*x+c)**2/(a+a*sin(d*x+c))**2,x)

[Out]

Piecewise((40*tan(c/2 + d*x/2)**7/(15*a**2*d*tan(c/2 + d*x/2)**10 + 75*a**2*d*tan(c/2 + d*x/2)**8 + 150*a**2*d
*tan(c/2 + d*x/2)**6 + 150*a**2*d*tan(c/2 + d*x/2)**4 + 75*a**2*d*tan(c/2 + d*x/2)**2 + 15*a**2*d) - 120*tan(c
/2 + d*x/2)**6/(15*a**2*d*tan(c/2 + d*x/2)**10 + 75*a**2*d*tan(c/2 + d*x/2)**8 + 150*a**2*d*tan(c/2 + d*x/2)**
6 + 150*a**2*d*tan(c/2 + d*x/2)**4 + 75*a**2*d*tan(c/2 + d*x/2)**2 + 15*a**2*d) + 176*tan(c/2 + d*x/2)**5/(15*
a**2*d*tan(c/2 + d*x/2)**10 + 75*a**2*d*tan(c/2 + d*x/2)**8 + 150*a**2*d*tan(c/2 + d*x/2)**6 + 150*a**2*d*tan(
c/2 + d*x/2)**4 + 75*a**2*d*tan(c/2 + d*x/2)**2 + 15*a**2*d) - 120*tan(c/2 + d*x/2)**4/(15*a**2*d*tan(c/2 + d*
x/2)**10 + 75*a**2*d*tan(c/2 + d*x/2)**8 + 150*a**2*d*tan(c/2 + d*x/2)**6 + 150*a**2*d*tan(c/2 + d*x/2)**4 + 7
5*a**2*d*tan(c/2 + d*x/2)**2 + 15*a**2*d) + 40*tan(c/2 + d*x/2)**3/(15*a**2*d*tan(c/2 + d*x/2)**10 + 75*a**2*d
*tan(c/2 + d*x/2)**8 + 150*a**2*d*tan(c/2 + d*x/2)**6 + 150*a**2*d*tan(c/2 + d*x/2)**4 + 75*a**2*d*tan(c/2 + d
*x/2)**2 + 15*a**2*d), Ne(d, 0)), (x*sin(c)**2*cos(c)**5/(a*sin(c) + a)**2, True))

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.71 \[ \int \frac {\cos ^5(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {6 \, \sin \left (d x + c\right )^{5} - 15 \, \sin \left (d x + c\right )^{4} + 10 \, \sin \left (d x + c\right )^{3}}{30 \, a^{2} d} \]

[In]

integrate(cos(d*x+c)^5*sin(d*x+c)^2/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

1/30*(6*sin(d*x + c)^5 - 15*sin(d*x + c)^4 + 10*sin(d*x + c)^3)/(a^2*d)

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.71 \[ \int \frac {\cos ^5(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {6 \, \sin \left (d x + c\right )^{5} - 15 \, \sin \left (d x + c\right )^{4} + 10 \, \sin \left (d x + c\right )^{3}}{30 \, a^{2} d} \]

[In]

integrate(cos(d*x+c)^5*sin(d*x+c)^2/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/30*(6*sin(d*x + c)^5 - 15*sin(d*x + c)^4 + 10*sin(d*x + c)^3)/(a^2*d)

Mupad [B] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.65 \[ \int \frac {\cos ^5(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {{\sin \left (c+d\,x\right )}^3\,\left (6\,{\sin \left (c+d\,x\right )}^2-15\,\sin \left (c+d\,x\right )+10\right )}{30\,a^2\,d} \]

[In]

int((cos(c + d*x)^5*sin(c + d*x)^2)/(a + a*sin(c + d*x))^2,x)

[Out]

(sin(c + d*x)^3*(6*sin(c + d*x)^2 - 15*sin(c + d*x) + 10))/(30*a^2*d)